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Atmospheric moisture content is a critical factor in both the water balance and the energy 

balance for a river basin.  Despite its importance to hydrology, atmospheric moisture is sparsely 

measured, particularly in the mountains.  Since few observations exist, numerous empirical 

methods have been developed to estimate relative humidity (RH) or the dewpoint temperature.  

However, most of these algorithms were developed in continental regions and may have limited 

accuracy outside the region where they were developed.  Furthermore, future changes in 

atmospheric moisture content may reduce our ability to rely on empirically determined 

relationships.  Alternative options include installing more in situ sensors, looking at nearby free 

air measurements, and/or running a numerical weather model. 
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We compared densely-distributed measurements of dewpoint temperatures in two study 

sites over three years in a semi-arid, maritime mountain range (Sierra Nevada, California) 

against: (1) simple empirical algorithms, (2) the Parameter-elevation Regressions on Independent 

Slopes Model (PRISM) linear regression data sets based on observational data, (3) the Weather 

Research and Forecasting (WRF) mesoscale model, and (4) radiosonde data.  Empirical 

algorithms that used only one sea-level measurement of dewpoint to extrapolate to higher 

elevations, on average overestimated moisture in the basin, displaying median biases of daily 

dewpoint temperatures up to 10.5°C.  These algorithms were subject to errors both from 

misrepresenting the linear rate of moisture loss with elevation and, on some days, from assuming 

the dewpoint temperature followed a linear pattern at all.  These methods used assumptions that 

were empirically-derived in other climates.  PRISM improved upon these methods by using local 

observations to determine the local average lapse rate, with median bias values of -0.3°C and 

2.2°C in our study sites.   

Empirical algorithms that derived dewpoint from air temperature showed a significant 

seasonal variation in performance.  Assuming uniform advection of moisture from the Pacific 

does not capture the moisture dynamics in the Sierra Nevada.  Radiosonde readings showed large 

biases from observations, and a wide range of day to day error.  WRF improved on the free-air 

data, performing well in representing both the overall trends in the basin (with median biases of  

-0.9°C and -1.0°C in our study sites) and displaying the smallest range of error throughout the 

year.  The impact of errors in dewpoint temperature estimation on hydrology is by applying the 

Distributed Hydrology Soils and Vegetation Model (DHSVM) to the upper Tuolumne River 

Watershed in Yosemite.  A ±2°C bias in dewpoint temperatures resulted in an average ±3 day 

shift in snowmelt timing and change annual streamflow volumes by ±1%.   
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When modeling a geographically simple basin, one base station within the basin paired 

with PRISM lapse rates will be representative of overall moisture trends most of the time, biased 

by -0.3°C in one study site.  However, if the basin is more geographically complex, with air 

masses varying due to predominant weather patterns, micro-topography, and transport along the 

mountain range, a physically-resolved model such as WRF is necessary to represent dewpoint 

variations.  To reduce average modeled bias in a basin, the simplest method is to add a high-

elevation station that records dewpoint temperatures and use that to model the average dew point 

temperature decline with elevation. 
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1. Introduction 

Atmospheric moisture content, typically measured as dew point temperature or relative 

humidity (RH), is a critical factor in modeling both the energy balance and the water balances in 

a river basin.  Atmospheric moisture affects the energy balance by influencing both incoming 

longwave radiation and latent heat transfer [Ruckstuhl et al., 2007].  Algorithms used to estimate 

longwave radiation, which is infrequently measured, rely on air temperature and water vapor in 

the atmosphere [Flerchinger et al., 2009].  Because increased water vapor raises the emissivity 

of the earth’s atmosphere, higher dewpoint values in the atmosphere result in more incoming 

longwave radiation at the surface [Rangwala et al., 2009].  Dewpoint measurements are 

particularly important in making accurate empirical estimates of longwave radiation when clouds 

are present [Sicart et al., 2006].  At the same time, a smaller dewpoint depression, the difference 

between the air temperature and the dew point temperature, results in reduced evaporation or 

sublimation and thus less surface cooling due to latent heat.  Inaccurate longwave radiation and 

energy balance estimates can change the modeled timing of snowmelt and the estimated energy 

available for potential ET, affecting the projected water balance for agricultural and urban uses.   

Dewpoint depression also affects the water balance by changing the amount of water 

evaporated or transpired from a basin.  Evapotranspiration (ET) increases with a greater 

dewpoint depression, as there is a greater deficit between the moisture that the atmosphere can 

hold and the current moisture content.  The Penman-Monteith equation, which can be used to 

predict ET, is strongly affected by changes in dewpoint depression, as well as being influenced 

by the estimated longwave radiation [Gong et al., 2006]. 
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Despite its importance to hydrology, atmospheric moisture is sparsely measured.  Data 

limitations are exacerbated at higher elevations in complex terrain.  In California, the number of 

meteorological stations per hundred-meter elevation band declines significantly with elevation 

above sea level [Lundquist et al., 2003].  Of the available mountain meteorology measurements, 

only a small fraction record atmospheric moisture variables.  For example, in the SNOTEL 

network, a system of high elevation weather stations maintained by the National Resources 

Conservation Service for water supply and snowmelt, only about 14% of over 800 stations 

around the western U.S. measure relative humidity [http://www.wcc.nrcs.usda.gov/snow/ 

Accessed 2 November 2011].   

Given limited available measurements, numerous empirical algorithms have been 

developed for projecting RH or dew point temperatures across mountainous terrain.  These range 

in complexity from simple extrapolations to more extensive calculations that require iterative 

schemes.  These empirical algorithms are available for two cases: 1) no measurements are 

available in a watershed [Kimball et al., 1997; Running et al., 1987], and 2) only one point 

measurement is available, which must be distributed across a basin [Cramer, 1961; Franklin, 

1983; Kunkel, 1989; Wigmosta and Vail, 1994].  Most of the algorithms available were 

developed in continental regions, such as western Montana [Running et al., 1987], New Mexico 

and Texas [Kunkel, 1989].  Kimball et al. [1997] notes that algorithms developed in arid 

locations have limited accuracy in regions outside where they were developed.  For example, 

Waichler and Wigmosta [2003a] found that when generating meteorological data in the Oregon 

Cascades, using the minimum temperature for daily dew point did not generate the observed RH 

pattern as well as using historical observations of monthly and hourly RH means to make future 

projections.  Eccel [2012] found that while the widely used methods [Kimball et al., 1997; 



www.manaraa.com

)

3 

 

 

Running et al., 1987] were appropriate in the Italian alps, site-specific calibrations based on 

month and presence of precipitation were required.   

Furthermore, our future ability to rely on relations determined empirically from historical 

observations is limited with changes in atmospheric moisture.  Dew point temperatures have 

increased by several tenths of a degree per decade across most regions of the U.S. during 1961 - 

1995, reflecting an increase in atmospheric water vapor [Gaffen and Ross, 1999; Robinson, 2000; 

Trenberth, et al. 2007].  While relative humidity trends are weaker, these reflect increases across 

the country as well [Gaffen and Ross, 1999].  Climate model projections indicate that the water 

vapor content of the atmosphere will continue to increase in the future [Dai et al., 2001; 

Trenberth, et al. 2007].   

Given the importance of atmospheric moisture content in hydrological modeling and the 

sparsity of measurements in mountain locations, this paper investigates options for representing 

RH or dew point temperatures in the Sierra Nevada.  These mountains are an apt study location 

for two reasons.  First, prior work hints that RH may be more difficult to estimate in semi-arid or 

Mediterranean climates, the climate classification of our test basins according to Peel et al. 

[2007].  Second, the Sierra Nevada, where our test sites are located, is of particular concern to 

water resource managers, as there are significant future water supply shortages projected 

[Barnett, et. al., 2008].   

To understand different measures of atmospheric moisture content and how they change 

in complex terrain, we first review these variables (2).  We next present the study area and data 

sources used (3.1).  We present a summary of methods to estimate dew point temperatures in a 

mountain basin when limited or no observations are available (3.2).  These include: (a) simple 

empirical algorithms, (b) the Parameter-elevation Regressions on Independent Slopes Model 
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(PRISM), which uses lapse rates based off observations [Daly et al., 2008], (c) the Weather 

Research and Forecasting (WRF) model, which is a numerical weather prediction system 

[Michalakes et al., 2001], and (d) using data from a nearby radiosonde station.  These methods 

were selected to test the transferability of empirical fits to our study site (empirical methods), 

whether physical principles of conservation of moisture in a lifted air mass are an appropriate 

metric for the basin, whether uniform advection of the free atmosphere describes moisture 

dynamics in the mountain range (radiosonde data), or whether a full atmospheric physics model 

is necessary to capture dewpoint variations (WRF).  Methodology includes a summary of 

analysis techniques (3.3).  The results (4) first summarize with a case study (4.1), then look at the 

performance of these models in representing atmospheric moisture in the study sites (4.2), and 

look into factors affecting their performance (4.3).   We demonstrate the impacts of errors in 

representing this meteorological input of atmospheric moisture on timing of snowmelt and 

quantity of streamflow (4.4).  This work can provide guidelines for choosing methods to 

represent atmospheric moisture content in the Sierra Nevada and similar regions. 
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2. Background: Metrics of Atmospheric Water 

Water vapor is influenced by the air temperature and the local atmospheric pressure, 

which change with elevation according to the ideal gas law.  Atmospheric moisture content may 

be expressed in numerous ways.  The mixing ratio (R) defines the mass of water in the 

atmosphere per kilogram of dry air.  The actual vapor pressure of water (Ea) defines the amount 

of water in the air in units of pressure, while the saturation vapor pressure (Esat) is the amount of 

water that the air can hold at a given temperature.  The relative humidity (RH) is the ratio of the 

actual over the saturation vapor pressure.   The dew point temperature (TD) is the temperature at 

which the air will be saturated for a given amount of water vapor.  The difference between this 

and the actual air temperature is termed the dewpoint depression.  Further explanation on these 

variables and how they can be calculated is given in Appendix A.   

Figure 1 illustrates relations between measures of atmospheric moisture when holding 

dewpoint temperature, mixing ratio or relative humidity constant with changes in elevation.  In 

panel (A), we use cups of water to visualize atmospheric moisture (adapted from Cramer 

[1961]).  The size of the cup is the potential amount of water that the air can hold at a given 

temperature.  The amount of moisture in the air is represented by the water in the cup.  As 

elevation increases, pressure and temperature decrease, in turn decreasing the overall size of the 

cup.  Panel (B) shows dewpoint temperature (TD), mixing ratio (R), actual vapor pressure (Ea) 

and relative humidity (RH) with changes in elevation.  When dewpoint temperature is held 

constant with elevation, water vapor pressure remains constant, while RH increases due to 

decreasing air temperature, and the mixing ratio increases due to pressure changes with 

elevation.  When the mixing ratio is held constant with elevation, vapor pressure and dewpoint 

temperatures decline slightly, while RH increases with elevation.  When RH is held constant 
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with elevation, the dew point temperature, actual water vapor, and dew point depression decrease 

with elevation.   

 

 

Figure 1. Schematic representation of relationship between atmospheric water vapor metrics 
with changes in elevation.  (A) Visual representation of maintaining constant dewpoint 
temperature, constant mixing ratio, and constant relative humidity with increases in elevation and 
the corresponding decrease in temperature.  Cups representing saturation vapor pressure contain 
water representing actual vapor pressure.  (B) Dewpoint temperature (TD) with dashed line for 
air temperature, mixing ratio (R), actual vapor pressure (Ea) and relative humidity (RH) with 
changes in elevation for constant dewpoint temperature (top row), constant mixing ratio (R) and 
constant relative humidity (middle row).   
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For this study, we represent atmospheric moisture with dew point temperature for three 

reasons.  First, dew point temperature is familiar to water resource managers as the most 

commonly used humidity measure [Gaffen and Ross, 1999; Robinson, 1998], and is the metric 

used in numerous models [Daly et al., 1994; Kimball et al., 1997; Running et al., 1987].  Quality 

control techniques used for air temperature can be applied easily to dew point temperature.  

Second, dew point temperature most frequently shows a clear lapse rate at elevation.  Third, 

dewpoint is a conservative property with isobaric heating and cooling as long as there are no 

moisture changes [http://amsglossary.allenpress.com. Accessed 8/16/12]. 
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3. Methods 

3.1. Study Area and Data Sources  

 
Figure 2. Maps of (a) the American River Basin (ARB) and (b) the Tuolumne and 
Merced River Basins in the vicinity of Yosemite National Park.  Watersheds that are 
highlighted include the North Fork American River Basin in the ARB, the Tuolumne in 
the Yosemite area, and the Upper Tuolumne River Basin above Highway 120.  The 
locations of permanent meteorological towers (HMT stations in the ARB and CDEC 
stations in Yosemite) and temporary sensors (iButtons in the ARB and Hobos in 
Yosemite) are shown.  The Dana Meadows station (DAN), used for hydrologic modeling 
impacts (described in section 3.3) is shown.   
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Table 1. Observational Data 

Region  Measurement Period of record 
(water years)  

Count of 
stations 

Elevation Range 
(m) 

ARB Hydrometeorological 
Testbed Stations 

2008 – 2010 15 7-2100 

ARB Hygrochron iButtons 2008-2010 64 424-2429 

Yosemite CDEC stations 2003-2005 9 311-3031 

Yosemite Hobo sensors 2003-2005 25 1309-3205 

 

We assessed the performance of methods of generating dewpoint temperature in the 

Sierra Nevada in California.  Two well-instrumented study sites were selected on the west slope 

of the Sierra Nevada to represent two variations on topographic controls.  These are the North 

Fork American River Basin (ARB), where elevation increases fairly uniformly from west to east, 

and the Yosemite area, which contains multiple sub-basins that experience cold air pooling 

effects and deviations from linear air temperature lapse rates [Lundquist and Cayan, 2007; 

Lundquist et al., 2008] (Fig. 2).  The Sierra Nevada receives the majority of its precipitation in 

the winter and early spring and little during the summer.  Annual precipitation and runoff 

fluctuate between 50% and 200% of the climatological averages [Lundquist and Cayan, 2007].  

In the Sierra Nevada, water vapor contributions are from the Pacific Ocean for most of the year 

[Dodd, 1965; Robinson, 1998]. On a coarse scale dewpoint temperatures decreased between 

Sacramento and a high elevation meteorological station in the Sierra Nevada [Dodd 1965].  Air 

masses over the east slope are much drier, moving off the Nevada desert.   

   We used data from permanent meteorological towers and hygrochron iButtons 

[http://www.maxim-ic.com/datasheet/index.mvp/id/4379] in the ARB.  Permanent 
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meteorological towers from elevations between 7 and 2100 meters in the ARB were part of the 

NOAA Hydrometeorology Testbed (HMT).  The HMT is a meteorological measurement 

program aimed at providing data for improved hydrologic forecasting [Ralph et al, 2005], with 

measurements sampled every two minutes for water years 2008 through 2010.  A high-resolution 

network was created with hygrochron sensors, a stand-alone device that measures air 

temperature and RH and records the data in an enclosed data logger.  Precipitation measurements 

were also acquired from the HMT stations.  Hygrochrons were installed in evergreen trees 1.5 to 

4 meters above the ground (depending on local snow depth) and shaded from the sun by 

overhanging branches.  Further radiation shielding was provided by upside-down plastic funnels.  

Deployment methodology followed Lundquist and Huggett [2008].  The hygrochrons were 

deployed each August and recorded data every two hours for approximately 11 months until 

reaching capacity, for subsets of water years 2008 through 2010.  An average of 35 hygrochrons 

were deployed each water year over the study period, representing 64 locations that ranged in 

elevation from 424 to 2429.  Appendix B details a validation study on deploying hygrochrons in 

remote conditions.   

   We used data from permanent meteorological towers and Hobo sensors 

[http://www.onsetcomp.com/products/hobo-data-loggers] in Yosemite.  These data run an east-

west transect across the ridge line of the Sierra Nevada.  Data from permanent meteorological 

towers at elevations from 311 to 3031 meters were acquired from the California Department of 

Water Resources Data Exchange Center (CDEC), a hydrometeorological data program in 

California originally started for flood forecasting [http://cdec.water.ca.gov/intro.html].  The 

CDEC stations provided hourly air temperature, relative humidity and precipitation data for 

water years 2003 through 2005.  Hobo sensors were deployed between May and June at 
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elevations from 1309 to 3205 meters for one to two years at a time for water years 2003 through 

2005, recording data every 15 to 30 minutes [Lundquist et al., 2003].  An average of 20 hobos 

were deployed each water year over the study period, representing 25 locations that ranged in 

elevation from 424 to 2429 up the west slope of the Yosemite study site.  All data were quality 

controlled using the methodology of  Meek and Hatfield  [1994].  This included removing 

extreme spikes in the data, values outside of the threshold of operation, and long periods of 

constant data records that were not consistent with nearby stations in the basin.  For analysis, 

data were averaged into daily-average and monthly-average timeseries, when at least 75% of the 

time period was available.   
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3.2. Methods of Estimating Dew Point Temperatures 

3.2.1. Empirical Algorithms: Projecting Dewpoint From a Base Station 

Table 2. Empirical algorithms: spatial projections of dewpoint measured at a base station.  One 
dewpoint measurement available. 

Model  Test Location Model Description Citation 

Count  

Cramer 

[1961]  

Western Oregon  Assumes constant mixing ratio with 
elevation.  

3 

Franklin 

[1983]  

Priest River Experimental 
Forest in northern Idaho  

Dew point lapse rate of -1.25 °C km-1 with 
elevation.  

32 

Kunkel 

[1989]  

Validated at 11 stations in 
the intermountain West. 

Dew point calculated from base station dew 
point (e(zo))) adjusted by the difference 
between site elevation (z) and base elevation 
(zo) and a constant based on the month (am) 

)](exp[)()( 00 zzazeze m −−=  

18 

Constant 

RH 

Wigmosta 

et al. [1994] 

DHSVM model is 
employed widely.  RH 
distribution is included in 
the hydrologic model. 

Relative humidity is constant throughout the 
basin. 

860 

Citation count acquired from Google Scholar, 4/9/12. 

 

Where a single point measurement of moisture content exists, empirical algorithms use 

data from a base station and make assumptions about the variation of moisture across an 

elevation gradient to project dewpoint temperatures to sites in the basin.  The following 

algorithms can be used to spatially extrapolate moisture content (Table 1).  Cramer [1961], a 

study in western Oregon, assumes thorough mixing between air layers, which results in a 

constant mixing ratio (and thus atmospheric water content) with elevation.  The mixing ratio is 

conserved during adiabatic lifting of an air parcel [Wallace and Hobbs, 2006], so we would 
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expect this relationship if topographically-forced air is the primary cause of vertical moisture 

variation and no moisture condensation is occurring.   Franklin [1983] used observations from 

the Priest River Experimental Forest in northern Idaho, and found that dew point temperature 

varied with elevation according to a lapse rate of -1.25°C km-1
.  Kunkel [1989], extrapolates 

water vapor pressure based on differences between site elevation and base station elevation.  

This is corrected with monthly-varying coefficients empirically calculated from 11 stations in the 

intermountain west; data is from the climate atlas of the US [NOAA, 1968].  This algorithm thus 

fits a seasonally-varying empirical adjustment to declining water vapor pressure with elevation.  

Some models, such as the Distributed Hydrology Soils and Vegetation Model (DHSVM), 

assume a constant relative humidity, throughout a basin [Wigmosta et al., 1994]; given that 

temperature decreases with elevation, this results in moisture declines with elevation.    Franklin 

[1983] is cited as the lapse rate of choice in Running et al. [1987].  SnowModel, a snow 

evolution model, employs the Kunkel [1989] method for relative humidity extrapolations [Liston 

and Elder, 2006].   

When utilizing empirical algorithms that project dew point temperatures from a base 

station, we must evaluate two metrics: (a) how well does the modeled lapse rate fit the observed 

lapse rate, and (b) how much does the location of the base station within the basin influence 

modeled results.  The choice of base station from which to project dewpoint temperatures may be 

limited; often the only reliable source available is a low-elevation airport weather station.  To 

investigate the performance of projecting dewpoint temperatures given standard available data, 

dewpoint temperatures were extrapolated from the Sacramento international airport weather 

station [http://cdo.ncdc.noaa.gov/ulcd/ULCD] to observation locations within the ARB and 

Yosemite.   
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3.2.2 Fitting Lapse Rates with Local Data: PRISM 

The Parameter-elevation Regression Independent Slopes Model (PRISM) can be 

considered an optimal empirically-derived local lapse rate.  The model incorporates observations 

into linear regressions to produce gridded datasets of climate parameters using the procedures 

described in Daly et al. [2008] for air temperatures to generate dewpoint temperature maps.  

Local lapse rates are defined and used to construct grids with observations from available 

stations that are weighted according to their similarity to their local grid cell.  Continuous, digital 

maps at a resolution of 4-km are available for monthly average, minimum and maximum 

temperature, precipitation and dew point data on monthly, annual and event-based timescales.  

800-m normals are also available for air temperature and precipitation 

[http://prism.oregonstate.edu/].  This data is similar to the empirical methods based on one 

atmospheric moisture measurement in a basin, except that this regression based on local 

observations.  We acquired dew point for 4-km grid cells in the Yosemite area and the American 

River Basin for water years 2001 through 2010 and compared these to observations located 

within the grid cells.   
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3.2.3. Empirical Algorithms: Estimating Dewpoint From Air Temperature Alone 

Table 3. Empirical algorithms: based off air temperature.  No atmospheric moisture 
measurements in a basin. 

Model  Test Location Model Description   Citation 

Count  

Running et 

al. [1987]  

Montana (1983), Oregon 
(June 1989 – March 1990), 
WA, AK, TN, WI, AZ, FL 
(1984)  

Dew point assumed to be minimum daily 
temperature. 
 

383 

Kimball et 

al. [1997]  

Validated at 52 weather 
stations in the continental 
US from 1987-1994  

Calculates dew point (Td) from min (Tmin) 
and max (Tmax) daily temperature and the 
ratio of daily evapotranspiration to annual 
precipitation (EF) (in Mt-Clim, 90 day 
annualized precipitation is used). 
 

Tmin)]-x0.0006(Tma+

)32.766EF-12.312EF+

 1.444EF-31.211(1.00+Tmin[-0.12 = Td
32  

155 

Citation count acquired from Google Scholar, 4/9/12. 

 

When no atmospheric moisture measurements exist, empirical algorithms may use air 

temperature to estimate water vapor measurements (methods described in Table 2).  Running et 

al., [1987], developed primarily in Montana but since employed widely across the U.S., use the 

daily minimum temperature as the dew point temperature.  This assumes that dew forms every 

night and at this point, given the high latent heat demands of condensation, further drops in air 

temperature below the dewpoint temperature will be reduced.  Kimball et al., [1997] note that the 

minimum nighttime temperature may be higher than the dewpoint temperature in arid climates, 

where dew may not form every night.  Their algorithm, validated at stations across the US, 

expands upon the Running et al. [1987] method by adjusting the calculated dew point depending 
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on the aridity of the region, as measured by the ratio of the daily potential evapotranspiration to 

annual precipitation.  To investigate performance of estimating dewpoint temperature from air 

temperatures, we used air temperature measurements from every observation in our study sites, 

and compared the local measured dewpoint with that estimated from local temperature.   

The Variable Infiltration Capacity (VIC) model [Liang et al., 1994], which has been 

widely used to solve water and atmospheric energy balances, and the Mt-Clim meteorological 

pre-processing model [Glassy and Running, 1994; Kimball et al., 1997], both employ methods 

from the Running et al. [1987] and Kimball et al. [1997] algorithms.  It should the noted that the 

Mt-Clim model uses a 90-day annualized precipitation for the aridity index in the Kimball et al. 

[1997] method.  The Mt-Clim methods are employed in the RHESSys hydroecological model 

[Tague and Band, 2004] and the Advanced Weather Generator meteorological preprocessor 

[Ivanov et al., 2007] for the TIN-based Real-Time Integrated Basin Simulator (tRIBS) [Ivanov, 

2004].  The VIC preprocessor methods were applied to generate the widely-used Maurer, E.P. 

et. al. [2002] (cited 380 times, accessed 4/9/12) and Hamlet, A.F. and D.P. Lettenmaier [2005] 

(cited 160 times, accessed 4/9/12) atmospheric forcing datasets for hydrologic modeling.   

 

3.2.4. Free-air Variations: Radiosonde Data 

Free air dewpoint data were acquired from radiosonde measurements at Oakland, obtained from 

the NOAA radiosonde database [http://www.esrl.noaa.gov/raobs/].  Sounding data were 

available twice daily, at 00 and 12 UTC (16 and 4 local time).  These data were averaged daily 

and interpolated to the elevation of observations in the ARB and Yosemite for comparison. 
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3.2.5. Physically-based Free-air Variations: WRF 

The Weather Research and Forecasting Model (WRF) is a physically-based numerical 

weather prediction models that can be forced with observational data [Skamarock and Klemp, 

2008].  Initial and lateral boundary conditions in the WRF product were forced with the 32-km 

gridded North American Regional Reanalysis (NARR), a meteorological product that 

incorporates surface and upper air observations, to a large extent radiosonde data, over the 

continental US [Mesinger et al., 2006].  Boundary conditions were reinitialized every 5 days 

with an allowed three hours of spin-up.  The WRF model is run at a six-second timestep, 

resolving vertical temperature and moisture profiles with advection from neighboring grid cells 

and using the Morrison 2-moment microphysics scheme [Morrison et al., 2009].  To test the 

ability of WRF to represent spatial gradients of atmospheric moisture, the WRF model was run at 

6-km resolution over California for October – June of water years 2001 – 2010.  These data were 

prepared by Mimi Hughes of NOAA and are described in [Hughes et al., submitted; Wayand et 

al., submitted].  Running WRF at a 6-km grid size resolves local topography, such as the Sierra 

Nevada, at a scale useful for hydrological modeling.  An advantage of WRF is that it is internally 

consistent: physical relations between air temperatures and dewpoint temperatures are 

maintained.  Surface output of air temperature and relative humidity were acquired for 6-km grid 

cells across the Yosemite area and American River Basin for water years 2001 through 2010.  

We calculated dew point temperature from these data and compared these data to observations 

located within the grid cells to assess the performance of the model.     
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3.3. Hydrologic Model  

The propagation of dewpoint estimation errors in hydrological modeling are 

demonstrated using the DHSVM hydrology model in a small basin in the Yosemite area.  

DHSVM is a physically-based distributed hydrology model that requires inputs of air 

temperature, relative humidity, wind speed, incoming shortwave and longwave radiation and 

precipitation at a three-hourly time step [Wigmosta et al., 1994].  The input relative humidity is 

assumed constant over the basin.  The model was calibrated for the sub-basins of the upper 

Tuolumne River Basin in Yosemite National Park for water years 2003 through 2009 [Cristea et 

al., submitted; Lowry et al., 2011]; we look at the small sub-basin of the Tuolumne River above 

Highway 120 (Fig. 2) with elevations ranging between 2600 and 4000 m .  Baseline dewpoint 

temperatures were calculated using temperature and relative humidity measured at the Dana 

Snow Pillow Site at 3000 m elevation (Fig. 2).   These were adjusted to represent uniform biases 

of ±2°C.  In cases where adjusting the dewpoint temperature up by 2°C caused the dewpoint to 

exceed the air temperature, the dewpoint temperature was capped at the air temperature (to 

prevent unphysical conditions of super-saturation).  This was necessary in 15% of the total time-

steps, resulting in an average dew point temperature increase of 1.85°C.  Longwave radiation 

was calculated using the Idso [1981] algorithm for clear sky conditions.  Evapotranspiration, 

latent heat fluxes, streamflow and SWE generated by the model were compared to values 

generated using locally-measured (baseline) dewpoint data.  Sublimation rates were 

approximated from latent heat fluxes, using the latent heat of sublimation. 
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3.4. Techniques for Assessing Observed Dewpoint Patterns 

We look at observed dewpoint temperature trends and concurrent meteorology to evaluate 

reasons behind the performance of the models.  To assess the frequency of days with and without 

a linear pattern, we calculated a best fit line between daily dewpoint temperatures and elevation.  

The root mean squared error (RMSE) between observations and this best-fit line defines the 

amount of scatter from a linear lapse rate, where a low RMSE is a relatively linear dewpoint 

lapse rate with elevation while a high RMSE shows scatter in dewpoint temperatures with 

elevation.   

The impact of precipitation on dewpoint temperature trends was determined by applying a 

binary to total daily precipitation.  We assessed when measured precipitation in a day was greater 

than zero, as opposed to recording no precipitation at the permanent station. 

To assess the influence of wind patterns we looked at the NOAA NCEP/NCAR reanalysis 

data sets [http://www.esrl.noaa.gov/psd/data/composites/day/ Accessed 27 July 2012].  These 

can be used to build composite data sets to see large-scale meteorological patterns.  Vector wind 

composites were created at the 850 mb and 700 mb geopotential levels to illuminate wind 

patterns affecting the ARB and Yosemite area respectively.  These composites were created for 

days with RMSE values <1°C, 1°C to 2°C and >3°C.  
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4. Results 

4.1. Case study of Estimated Dewpoint Temperatures in the Sierra Nevada 

We illustrate the performance of methods of generating dewpoint data with a case study 

in the ARB (Fig. 3) and Yosemite (Fig. 4).  Here we show modeled dewpoint temperatures 

plotted against elevation.  In both basins two days are shown, one day (left column) with a strong 

linear trend between dewpoint temperature and elevation, where better performance of the 

algorithms is expected, and one day (right column) with a weak trend between dewpoint 

temperatures and elevation.   

Methods that estimate dewpoint temperatures from one point measurement in the basin 

(Fig. 3A, Fig. 4A) perform well when there is both a linear trend of observed dewpoint 

temperatures in the basin, and the algorithm lapse rate matches that trend.  Both the assumption 

of a constant mixing ratio with elevation [Cramer, 1961] and of the almost equivalent -1.25°C 

km-1 lapse rate [Franklin, 1983] do not lose moisture quickly enough with gains in elevation.  

Adjustments to vapor pressure [Kunkel, 1989] or assuming constant RH with increases in 

elevation [Wigmosta and Vail, 1994] are closer to representing the decreased moisture at 

elevation, yet performance is limited by either the complex topography of Yosemite or days that 

do not show a linear lapse rate in dewpoint with elevation. The inclusion of PRISM [Daly et al., 

2008] shows the variation between observations and monthly-determined lapse rates within the 

ARB and Yosemite.  While these lapse rates do not capture daily variability, the PRISM method 

of weighted observations does come close to reproducing large-scale moisture trends within the 

basin.  Both assuming that the dewpoint is the minimum daily air temperature [Running et al., 

1987] and employing an aridity correction to this minimum temperature [Kimball et al., 1997] 

may misrepresent daily moisture (Fig. 3B, Fig. 4B).  Furthermore, if the basin contains few 
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stations, modeled data will be subject to compounded errors when dewpoint temperatures are 

projected across the basin.  Radiosonde data do not always capture the moisture variations in the 

basin, indicating that humidity in the mountains cannot be well-predicted by the vertical structure 

of humidity atmospherically upstream (Fig. 3C, Fig. 4C). The WRF mesoscale model 

[Skamarock and Klemp, 2008] is shown to perform well in both cases in the ARB and Yosemite.  
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Figure 3. Case study in the American River Basin of estimated dewpoint temperatures on a day 
showing a linear trend in dewpoint temperatures with elevation (left column) and a day showing 
a weak trend of dewpoint temperatures with elevation.  Observed dewpoint temperatures (TD) 
and air temperature (AT) are shown.  (A) Estimation of dewpoint temperature from the 
Sacramento (SAC) airport station (constant mixing ratio with elevation [Cramer, 1961], -1.25°C 
km-1 lapse rate [Franklin, 1983], adjustments to vapor pressure [Kunkel, 1989], constant RH with 
increases in elevation [Wigmosta and Vail, 1994]), and PRISM [Daly et al., 2008] (B) estimation 
of dewpoint temperature from air temperature ([Kimball et al., 1997; Running et al., 1987]) and 
(C) the WRF mesoscale model [Skamarock and Klemp, 2008], and radiosonde data.   
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Figure 4. As in Fig. 3, except for Yosemite area.   
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4.2. Performance of Methods of Generating Dewpoint Temperatures in the Sierra Nevada   

 Figure 5 illustrates the performance of methods of generating dewpoint temperatures (a) 

within the ARB for water years 2008-2010 and (b) within the Yosemite area for water years 

2003-2005, using histograms of the bias between daily-averaged modeled data and daily-

averaged observations.  Biases are calculated from the period for October through June to match 

the WRF period of record. 

 When one measurement of dewpoint temperature is available within a basin, empirical 

methods of extrapolation across a basin are dependent on both the choice of the base station, and 

whether the modeled lapse rate fits the observed lapse rate.  Due to the typically limited 

availability of stations measuring dewpoint temperatures in mountain regions, we used the 

Sacramento airport station to represent available data.  This station is near sea-level, an elevation 

below all stations within the basin.  Assuming a constant mixing ratio with elevation [Cramer, 

1961] results in a wet bias, with a median bias value of 4.7°C in the ARB and 10.5°C in the 

Yosemite area.  The assumption of a –l.25°C km-1 dewpoint temperature lapse rate from the base 

station [Franklin, 1983] results in median wet bias values of 4.4°C in the ARB and 10.1°C in the 

Yosemite area.  Seasonally-varying adjustments to the actual vapor pressure losses with 

elevation [Kunkel, 1989] are close to the trend of moisture loss in the basin, with a median bias 

value of -1.8°C in the ARB and 0.1°C in the Yosemite area.  Assumptions of constant RH 

[Wigmosta and Vail, 1994] also represent moisture loss in the basin, however are dry-biased by   

-0.6°C in the ARB and wet-biased by 1.2°C in the Yosemite area.  Much of the reported bias 

decreases when extrapolating from a measurement within the basin (not shown), suggesting that 

regardless of choice of method, errors are minimized by choosing a site as close to center of the 

desired elevation range as possible.  
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Since PRISM data [Daly et al., 2008] is produced in monthly-average maps, we compare 

these data to monthly-averaged dewpoint temperatures.  On this course resolution, the PRISM 

data performs better than other empirical techniques in the ARB.  Figure 4 shows a median bias 

of -0.3 in the ARB and 3.4°C in the Yosemite area. 

When no measurements of dewpoint temperature are available, the bias in dewpoint 

temperatures estimated from the air temperatures depends on the overall aridity of the basin.  

Assuming that the dewpoint temperature is equal to the nighttime minimum temperature 

[Running et al., 1987] results in a median wet bias in both basins, of 1.8°C in the ARB and 0.9°C 

in the Yosemite area.  Using an aridity correction on this minimum daily temperature [Kimball et 

al., 1997] results in a median wet bias of 1.1°C in the ARB, while resulting in a median dry bias 

of -4.1°C in the Yosemite area.   

Radiosonde data can be used to assess whether upwind upper-air measurements represent 

atmospheric moisture patterns within a basin.  These data are dry-biased, with a median bias of   

-5.0°C  in the ARB and -7.1°C in the Yosemite area. 

The WRF model [Skamarock and Klemp, 2008] resolves atmospheric physics and 

dynamics, and matches observed dewpoint temperatures in both basins well, with a median bias 

of -0.9°C in the ARB and -1.0°C in Yosemite, for the time period of October through June. 
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Figure 5. Performance of methods of generating dewpoint temperatures with daily-averaged data 
in (a) the ARB and (b) the Yosemite area.  Methods of spatially-extrapolating dewpoint from one 
measurement in the basin include constant mixing ratio with elevation [Cramer, 1961], -1.25°C 
km-1 lapse rate [Franklin, 1983], adjustments to vapor pressure [Kunkel, 1989], constant RH with 
increases in elevation [Wigmosta and Vail, 1994], methods of estimating dewpoint temperatures 
with no available measurements include calculations from air temperature ([Kimball et al., 1997; 
Running et al., 1987]), the WRF mesoscale model (WRF) [Skamarock and Klemp, 2008], and 
radiosonde data.  Note:  WRF output was only available for October through June, although all 
other methods were evaluated for the entire period of record. 
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 The interquartile ranges highlight likely errors in performance beyond the median bias.  

Figure 6 shows a boxplot of the bias between monthly-averaged estimated data and monthly-

averaged observations, and between daily-averaged estimated data and daily-averaged 

observations (a) within the ARB for water years 2008-2010, October through June data (to match 

the WRF period of record), and (b) within the Yosemite area for water years 2003-2005, October 

through June data.   

 Smaller interquartile ranges of monthly-averaged dewpoint bias indicate consistent model 

biases on average, with a range of performance between stations.  However, the larger 

interquartile range in daily-averaged dewpoint bias indicates that there is significant variability in 

moisture trends both on a daily basis, and between stations in this study location.  To highlight 

this error, we consider that while the Kunkel [1989] algorithm only displayed a median bias of 

0.1°C in the Yosemite area, the interquartile range of bias values was 4.6°C.   Using monthly-

averaged data, the PRISM model shows a similarly small range of bias to the WRF model, 

although it is biased wet in Yosemite.  While the assumption that the dewpoint temperature is the 

minimum air temperature [Running et al. 1987] is biased by 1.8°C in the ARB, the interquartile 

range is 6.3°C.  The other empirical algorithms based off temperature showed similar 

magnitudes of potential error.  Radiosonde data is not accurate a large portion of the time, with 

interquartile bias ranges of 12.3°C in the ARB and 15.2°C in in the Yosemite area.  Thus, nearby 

free air measurements are not an appropriate representation of the basins’ moisture the majority 

of the time.  The WRF model is more accurate a greater amount of the time and for a greater 

number of stations, showing a smaller interquartile range of dewpoint temperature bias, 3.3°C in 

the ARB and 4.1°C in the Yosemite area. 
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 Furthermore, the performance of the algorithms and models varies seasonally.  Figure 7 

shows the biases in daily-averaged modelled data for three seasons: the winter (December 

through February), spring (March through May) and summer (June through August).  From this 

we can observe that biases increase during the summer, dramatically so in the case of radiosonde 

data.  The Yosemite area shows a larger amount of seasonal variation than the more 

geographically simple ARB. 
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Figure 6. Bias between generated dewpoint temperatures and observations in (A) the American 
River Basin, monthly-averaged data, (B) the American River Basin, daily-averaged data, (C) 
Yosemite, monthly-averaged data, (D) Yosemite, daily-averaged data.  Methods shown include 
projections from the Sacramento Airport (constant mixing ratio with elevation [Cramer, 1961], -
1.25°C/km lapse rate [Franklin, 1983], adjustments to vapor pressure [Kunkel, 1989], constant 
RH with elevation [Wigmosta and Vail, 1994]), dew point temperatures calculated from air 
temperature measurements ([Kimball et al., 1997; Running et al., 1987]), the WRF mesoscale 
model (WRF) [Skamarock and Klemp, 2008], PRISM [Daly et al., 2008] and radiosonde data.  
All data shown is for October through June, for direct comparison with WRF, which was limited 
to these months. 
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Figure 7. Bias between methods of estimating dewpoint temperature and observations in the 
American River Basin and Yosemite with daily-averaged data during the winter (Dec-Feb) 
(A,D), spring (Mar-May) (B,E) and summer (Jun-Aug) (C,F).  Methods shown include 
projections from a low elevation base station (constant mixing ratio with elevation [Cramer, 
1961], -1.25°C km-1 lapse rate [Franklin, 1983], adjustments to vapor pressure [Kunkel, 1989], 
constant RH with increases in elevation [Wigmosta and Vail, 1994]), dew point temperatures 
calculated from air temperature measurements ([Kimball et al., 1997; Running et al., 1987]), the 
WRF mesoscale model (WRF) (unavailable during the summer months) [Skamarock and Klemp, 
2008], and radiosonde data.   
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4.3. Factors that Affect Estimation of Dewpoint Temperatures in the Sierra Nevada 

As illustrated in Figures 3 and 4, the observed dew point temperature patterns can vary 

dramatically from one day to the next, so we investigated the mean patterns and which weather 

patterns lead to deviations from this mean.  Averaged annually, moisture declined linearly with 

elevation in the Sierra Nevada.  Median dewpoint temperature changed -5.7°C km-1 during days 

with precipitation and -5.1°C km-1 during days without precipitation averaged over water years 

2008 through 2010 in the ARB.   Median dewpoint temperature changed -7.2°C km-1 during days 

with precipitation and -6.9°C km-1 during days without precipitation averaged over water years 

2003 through 2005 in the Yosemite area. For reference, the average annual air temperature 

displayed lapse rates between -6.3 °C km-1in the ARB, and -6.4°C km-1 up the west slope of 

Yosemite.  During the summer, moisture changes with elevation were smaller than in the winter.  

In both regions, dew point temperature lapse rates are on average 2.5°C km-1 less during the 

summer than the winter.  This means that there is a smaller moisture decline with increases in 

elevation in the summer.   

While monthly and annually-averaged dew point temperatures varied linearly with 

changes in elevation, at shorter time periods dew point temperatures often did not show a linear 

pattern.  We determined the fraction of time a lapse rate was a good description of the observed 

pattern by calculating the RMSE of the observations to the best fit line through those 

observations, for the ARB, the total Yosemite area, and the Yosemite stations above 1500 

meters.  In the ARB, dewpoint temperatures generally followed linear trends with elevation, with 

RMSEs less than 1°C during 35.5% of the study period.  In the Yosemite area, RMSEs this small 

only occurred during 16.5% of the study period.  While days with RMSEs>2°C occurred 10.3% 

of the study period in the ARB, they occurred 25.1% of the study period in the Yosemite area.  
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Days with RMSEs>3°C occurred during 2% of the study period in the ARB, and 6% of the study 

period in the Yosemite area.  Visual inspections of plots of elevation vs. dewpoint temperature 

display a breakdown between the dewpoint trends at higher and lower elevation stations in the 

Yosemite area (Fig. 4).  This is illuminated by comparing the RMSEs of the linear fit of all 

stations in the Yosemite area with that calculated just for stations above 1500 meters.  When the 

analysis was restricted to stations above 1500 m, RMSE values of less than 1°C occurred during 

25% of the study period, an improvement over the previous inclusion of low-elevation stations. 

We examined how well the data fit a linear approximation as functions of precipitation 

(Fig. 8A), average relative humidity (Fig. 8B), and dominant wind direction (not shown).    Days 

with rain had smaller RMSE values (Fig. 8A), with median values of 0.7°C in the ARB (253 

observations) and 0.9°C in Yosemite (169 observations) as compared to days without rain, 

median values of 1.3°C in the ARB (820 observations) and 1.6°C in Yosemite (925 

observations).  Days with a better fit to a linear trend (RMSE<1°C) occurred when RH was 

closer to saturation (median RH of 85% in the ARB and 80% in Yosemite), while days with a 

poorer linear trend (RMSE>2°C) were drier (median RH of 45% in the ARB and 44% in 

Yosemite) (Fig. 8B).  In both the ARB and Yosemite, days with a good linear fit between 

dewpoint temperatures and elevation (RMSE <1°C, 396 days in the ARB, 181 days in Yosemite) 

occurred in conjunction with strong westerly winds, while days with a weak linear fit between 

dewpoint temperatures and elevation (RMSE >3°C, 113 days in the ARB, 275 days in Yosemite) 

occurred during either weak winds or winds off the desert from the east.  
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Figure 8. (a) RMSE from a linear dewpoint temperature lapse rate on days with and without rain 
in the ARB and Yosemite area.  (b) RH on days with linear dewpoint lapse rates with gains in 
elevation (RMSE <1°C), to weak linear trends with elevation (RMSE>2°C) in the ARB and 
Yosemite.   
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4.4.  Impacts on Hydrology 

We demonstrate the impact of dewpoint temperature errors of ±2°C on snow 

disappearance date and annual streamflow with the DHSVM model calibrated to the Upper 

Tuolumne River Basin (above Highway 120) during the 7-year period during water years 2003 to 

2009.  Figure 9A shows the average impacts of a ±2°C dewpoint temperature change to observed 

dewpoint temperatures over the study period in terms of annual average longwave radiation, 

annual average latent heat flux, and total annual sublimation.  Figure 9B illustrates the impact of 

a ±2°C dewpoint temperature change for the time period from 1 May to 1 August 2005 on timing 

of snowmelt and (9C) modeled streamflow.  With a 2°C increase in dewpoint temperatures we 

observed a 2 W m-2 increase in estimated longwave radiation, a 0.3 mm day-2 decrease in 

estimated sublimation during the ablation season, snowmelt occurring 3 days earlier, and a 1% 

increase in modeled cumulative annual streamflow.  With a 2°C decrease in dewpoint 

temperatures, we observed a 2 W m-2 decrease in estimated longwave radiation, a 0.2 mm day-2 

increase in estimated sublimation, snowmelt occurring 3 days later, and a 1% decrease in 

modeled cumulative annual streamflow.   

This is a high-elevation water-limited basin, with a short growing season and little 

vegetation.  Annual evapotranspiration each year is controlled primarily by water availability 

instead of the energy balance; keeping annual evapotranspiration rates low [Lundquist and 

Loheide, 2011].  In this basin, the primary impacts of dewpoint estimation errors in this basin are 

on snow, and particularly the sublimation rates.  The impact is two-fold in our basin: (a) water is 

lost due to sublimation, but (b) with the cooling from sublimation latent heat fluxes, the 

snowpack melts more slowly. In our area, a ±2°C dewpoint temperature shift is on the small side 

of errors observed.  Larger errors in estimation, not shown in this example, further increase the 
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effects on streamflow and snow disappearance date.  Since dewpoint estimation errors increased 

during the summer, basins with hydrology driven in a larger part by evaporation would see 

increased model error.         

 

 
Figure 9. (A) Average annual longwave radiation, latent heat fluxes and calculated sublimation, 
baseline values and dewpoint changes of ±2°C.(B)  Timeseries of SWE at the Dana Meadows 
snow pillow and (C) annual streamflow in the Tuolumne River above Highway 120 with a ±2°C 
change in dewpoint temperature.    
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Table 4. Average annual changes in longwave radiation, latent heat fluxes, daily sublimation 
rates, streamflow in the TM120 basin and snow disappearance date shift in the upper Tuolumne 
meadows in Yosemite with a ±2°C change in dewpoint temperature.  Sublimation rates are 
presented for the ablation season.   
Dewpoint Change +2 °C -2 °C 

Longwave change 2.4 W m-2   -2.3 W m-2   

Sublimation change  -8.1 cm year-1  
 

6.1 cm year-1  

Snow disappearance date, 
Dana Meadows 

3 days earlier 
 

3 days later 
 

Net annual Tuolumne River 
streamflow  

1.3% 
 

-1.2% 
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5. Summary and Discussion 

We tested dewpoint estimation methods in the American River Basin and in the Yosemite 

National Park area in the Sierra Nevada.  Empirically-derived lapse rates are typically used to 

extrapolate one low-elevation dewpoint measurement through the basin.  Errors resulted when 

the lapse rates did not follow the moisture trends within the basin.  Both the Franklin [1983] 

assumption of a -1.25°C km-1 dewpoint temperature lapse rate and the Cramer [1961] 

assumption of a well-mixed air layer did not result in sufficient moisture declines over the 

mountain range.  Median biases in these methods were up to 10.5°C in the Yosemite area.  This 

indicates that the distribution of moisture with elevation in the Sierra cannot be well-determined 

by the assumption of an air parcel rising adiabatically along the mountain slope. 

Improvements were found with the Kunkel [1989] algorithm and the assumption of 

constant relative humidity, which represent a more rapid rate of moisture decline with elevation.  

All of the above methods were tested in other regions.  PRISM improved upon these methods by 

using local observations to determine the local lapse rate.  However, PRISM was more 

successful in the ARB (bias = 0.3 °C) than in the Yosemite area (bias = 3.4°C).  Dewpoint 

temperature decreased less rapidly with elevation during the summer, affecting the performance 

of these empirical methods.  The Franklin [1983] and Cramer [1961] assumptions showed 

improved performance during the summer, while the assumptions of constant relative humidity 

and Kunkel [1989] performed better during the winter.  PRISM performance was consistent 

across all seasons since it was empirically fit to local data each month. 

Empirical algorithms [Kimball et al., 1997; Running et al., 1987] that derived dewpoint 

from air temperature showed a significant seasonal variation in performance.  Both methods 

were dry-biased on average during the winter in both the ARB and Yosemite.  In the more-arid 
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summer, both methods had wet biases in the ARB (as large as a 8.1°C median bias for the 

Running et al., [1987] method), but only the Running method was wet biased in Yosemite.  The   

Kimball et al., [1997] aridity correction resulted in a median dry bias of -4.1°C in Yosemite  

(Fig. 7).  These numbers represent a best case scenario for these methods, as we used local 

temperature at each measurement point to predict the local dewpoint.  If the locally-estimated 

dewpoint must also be projected to another location in the basin (following one of the lapse-

based methods described above), the errors are likely to compounded.   

Assuming uniform advection of the vertical moisture structure above Oakland (close to 

the Pacific Ocean) does not well-represent the observed moisture patterns in the Sierra Nevada.  

Radiosonde readings both showed large biases from observations, and a wide range of day to day 

error.  Dry biases were particularly bad during the summer (median of -11°C in the ARB and -

15°C in Yosemite, Fig. 7).   During the summer, high pressure and an inversion are common 

over California, and air is not well-mixed between the Pacific and the Sierra Nevada.  Also, 

transpiration likely increases near-surface moisture relative to the free air at this time of year.    

WRF, which used a reanalysis product based on the Oakland sounding data for boundary 

conditions, greatly improved on the free-air data, performing well in representing both the 

overall trends in the basin (with median biases of -0.9°C in the ARB and -1.0°C in Yosemite) 

and displaying the smallest range of error throughout the September through June period.   WRF 

is able to represent cloud dynamics, such as decreases in the dewpoint temperature as 

precipitation forms and falls out of a saturated air mass (Fig. 3), as well as atmospheric 

dynamics, such as changing wind speeds and directions (and hence differential moisture 

advection) with height.  For example, different slopes of dewpoint temperature with elevation for 

groups of stations above and below 1500 m are commonly seen in the Yosemite region (Fig. 4).  



www.manaraa.com

㷰ѕ

39 

 

 

This may be due to lower level air being blocked and channeled into a mountain-parallel barrier 

jet [Parish, 1982] while upper level air continues to cross the range from west to east.  Or it may 

be due to mixing of air near the mountain passes with much drier air from the east.  While the 

full dynamics of this pattern are beyond the scope of the present study, WRF is the only 

methodology examined that consistently represents this change in lapse rate (or curvature) with 

elevation correctly.   One additional advantage of WRF is that it is internally consistent, 

maintaining physical relations between air temperatures and dewpoint temperatures as water 

condenses and evaporates.  If air temperatures and dew point temperatures are independently 

calculated from empirical lapse rates, the possibility exists for extrapolated dew point 

temperatures to exceed air temperatures, which would be an implausible representation of 

supersaturated air due to the neglect of calculating moisture condensation.     

 Empirical models that use projections from a point measurement assume that dewpoint 

temperatures follow a linear trend with elevation.  This assumption was valid only part of the 

time at our study sites.  Days with a RMSE of  <1°C to a linear fit occurred 35.5% of the time in 

the ARB, but only 16.5% of the study period in the Yosemite area. Linear dewpoint temperature 

trends were more likely during predominant westerly winds and/or on days with precipitation or 

high humidity.   Due to the separation in slope in the Yosemite dataset (described above and 

illustrated in Fig. 4), the frequency of a RMSE of <1°C to the linear fit increased from 16.5% to 

25% when we restricted analysis to stations above 1500 meters elevation.  The southern Sierra 

Nevada extends to higher elevations than the northern Sierra Nevada, resulting in more frequent 

blocking of wind, which is channeled into barrier jets along the mountain range [Lundquist et al., 

2010].  Thus, low elevation sites are exposed to air advected from low elevations to the south, 

whereas higher elevation sites are more likely exposed to air advected from the west.  This flow 
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separation sets up moisture influences at higher elevations that differ from lower elevations, 

resulting in a break in the linear lapse rate.  Thus in complex terrain, significant improvements in 

these modeling representations can be made by running WRF, which captures these dynamics, or 

by including enough higher-elevation base stations to resolve the observed changes in the dew 

point lapse rate. 

 We tested the effects of dewpoint estimation errors of ±2°C on streamflow simulations in 

a high elevation basin (>2600 m) within our Yosemite study area.  Because this area is snowmelt 

driven, the primary impacts of dewpoint errors were on the snowpack simulation.  Higher 

dewpoints increased estimates of downwelling longwave radiation (from the higher moisture 

content and hence, emissivity, of the atmosphere) and decreased modeled sublimation (by 

decreasing the vapor pressure deficit), which in turn, resulted in less cooling from the 

accompanying latent heat flux.  The net effect was an increase in melt rates and a shift in 

streamflow timing towards earlier in the year (Fig. 9).  Lower dewpoints had the opposite effect 

on each process, resulting in slower melt and later streamflow timing (Fig. 9).  While the overall 

effects of ±2°C biases were not large (± 3 days shift in snow disappearance), many of the 

methods tested resulted in much larger dewpoint biases for this basin (+10°C for the Cramer and 

Franklin methods and -4°C for the Kimball method), which would have larger impacts on snow 

and melt timing. 

 Most of the Sierra Nevada is moisture-limited, and so, while streamflow and net annual 

evapotranspiration are likely not sensitive to dewpoint temperature errors, many ecological 

processes likely will be.  For example, the vapor pressure deficit is a critical parameter in 

determining fire danger, and many ecological communities are sensitive to desiccation when the 

vapor pressure drops below a critical value [Rorig and Ferguson, 1999; Grantz, 1990].  Errors in 
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estimating dewpoint temperatures increased in the summer for most methods (Fig. 7), and these 

errors are likely to have broader reaching impacts than those we illustrated here for snow.   
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6. Conclusions 

 In sum, our results indicate that (1) empirical assumptions calibrated for other study sites 

may not be appropriate in the Sierra Nevada, (2) the assumption of a linear trend of dewpoint 

temperatures with gains in elevation is not always appropriate in the Sierra Nevada, and (3) the 

WRF model significantly improves on both free-air readings and empirical techniques in 

representing dewpoint temperatures within the basin.  The geographic differences between the 

two study sites were illuminated by the poorer performance of algorithms in the Yosemite area.     

Our study highlights the importance of both observations within a basin, and recognizing 

topographic limits on the use of simple models.  If you are modeling a geographically simple 

basin such as the ARB, one base station within the basin paired with PRISM lapse rates will be 

representative of overall moisture trends most of the time.  However, if the basin is more 

geographically complex, with air masses not only due to predominant weather patterns, but 

micro-topography effects and transport along the mountain range, a physically-resolved model 

such as WRF is necessary to represent dewpoint variations.  If one is just concerned with 

reducing the average modeled bias in a basin, the simplest method is to add a high-elevation 

station that records dewpoint temperatures and use a model that represents dew point 

temperature declining with elevation. 
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7.  Appendix A: Atmospheric Moisture Metrics and Calculations 

We outline metrics used to determine atmospheric moisture content and how we 

calculated dewpoint temperature.  The actual amount of water in the air can be viewed as the 

mixing ratio (r, g/kg or kg/kg), which is the ratio of the mass of water to the mass of dry air.  The 

amount of water in the air can also be given as the actual vapor pressure (e, Pa) of water in the 

air.  This relates to the mixing ratio and local air pressure (p, Pa) through the equation [Glickman 

and American Meteorological Society, 2000]: 

ep

e
r

−
=

622.0
             (1) 

At a given temperature, there is potential for the atmosphere to hold a given amount of 

water.  This maximum water vapor that the air can hold, called the saturation vapor pressure (es, 

Pa), is defined by the pressure and temperature dependence of the relation between the liquid 

and gas phases of water.  A large number of methods have been proposed to determine the 

saturation vapor pressure from air temperature (T, °C) based on empirical or theoretical 

derivations [Lawrence, 2005]. We employ the Magnus-Tetens formula [Murray et al., 1967] 

with empirically updated coefficients [Alduchov and Eskridge, 1996].  The formula, shown here, 

was found to err less than 0.4% for the temperature range of -40°C to 50°C [Lawrence, 2005].   
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In hydrological applications, we are often concerned with the ratio of the amount of water 

in the atmosphere over the amount of water that the atmosphere can hold.  This ratio is called the 

relative humidity (RH, %), and can be defined as: 

se

e
RH 100=           (3) 

The dew point temperature (Td, °C) is the temperature at which the air will be saturated 

for a given amount of water vapor.  This can be calculated from the actual amount of water vapor 

in the air (e) as determined from relative humidity and the Magnus formulation for vapor 

pressure at the dewpoint temperature: 
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This can be solved to a formulation the takes inputs of commonly measured variables, relative 

humidity and air temperature: 
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The dewpoint depression can be used to view the measure of the difference between 

actual and potential water vapor content in terms of temperatures.  This is calculated as the 

dewpoint temperature subtracted from the air temperature. 
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8. Appendix B: Reference for Processing Hygrochron Data 

In the hygrochron, temperature is measured with a digital thermometer.  For RH readings, a 

small hole covered with a filter permits only water vapor to enter, which is then measured with a 

capacitance sensor.  The instrument can be programmed to take readings at specified intervals 

ranging from one second to 273 hours, with an optional recording start delay.  The device has a 

storage capacity of 8192 8-bit readings or 4096 16-bit readings; this corresponds to roughly 11 

months of 8-bit temperature and RH readings taken at 2 hour intervals.  The operating range of 

the instrument is between -20 and 85°C with an accuracy of 0.5°C, and 0 and 100% humidity 

with an accuracy of 5%.  The minimum listed lifetime when logging both temperature and RH 

every hour in temperatures of -10°C to 40°C is between 6 and 7.5 years [Maxim datasheet, 

Report 19-4991, Rev 3, October 2009].  The HMP45s used for comparison have a stated 

accuracy of 2% RH when the humidity is less than 90%, and 3% otherwise [Campbell datasheet, 

Model HMP45C Temperature and Relative Humidity Probe, Rev March 2009].  The hygrochron 

data can be read with a USB computer attachment and software downloaded from the 

manufacturer’s website.   

The currently available software for processing hygrochrons is the OneWireViewer program.  

When using the OneWireViewer software, the capacitance measurement of RH assumes a 

temperature of 25°C.  This must be converted to the correct relative humidity using the 

temperature data and the following conversion: 

2

2

)25()25(

)25()25(

CTCTK

CTCTKH
HT corr
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°−−°−+

°−−°−+
=

δγ
βα

                          (6) 
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Where Hcorr is the humidity reading with an applied software correction algorithm that is 

included in the OneWireViewer data processing, T is the temperature in °C, K is 0.0307, α is 

0.0035°C-1, β is 0.000043°C-2, γ is 0.00001°C-1 at temperatures greater than 15°C and -

0.00005°C at temperatures less than 15°C, and δ is 0.000002°C-2 as can be found in the 

manufacturer’s datasheet (Maxim datasheet, Report 19-4991).   

When hygrochrons are exposed to humidity above 70% for prolonged periods of time, the 

sensors tend to record higher than actual values.  This is called saturation drift, and can be 

corrected for all cases when the readings exceed 70% RH using the following compensation:   

∑ =

−

−+
−=

N

k
k

k

corr

corrcorr
T

HT
HTNHS

1

3502.0

100/)25(1

54.2*0156.0
               (7) 

where HScorr  is the humidity reading after the drift compensation, N is the number of hours that 

the hygrochron records values greater than 70% humidity, HTNcorr is the temperature 

compensated humidity reading at the end of the Nth hour, HTcorr is the temperature compensated 

humidity reading at the kth hour, and Tk is the temperature reading at the kth hour.   

     The user is encouraged to check with the manufacturer for updates to the software or data 

correction procedures. 
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